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Preference inference is crucial to any system looking to distribute content to those who 
need it most. Most content recommenders today optimize for engagement (Thorburn, 2023) and 
infer revealed preferences rather than elicit the explicit preference from users. This paper 
explores pairwise comparison as a means of preference elicitation, and the underlying methods to 
generating a complete preference ranking or utility function. Recommenders based on explicit 
signals from pairwise comparison serve as an alternative to surveilling user behavior as a proxy 
for preference, which presents its own challenges (Milli et al. 2021). 

To understand pairwise comparison as a means of producing a distribution of 
preferences, we must consider two design questions: what are the main methods for selecting 
pairs to ask the decision-maker, and how are the results of such voting methods processed to 
infer preferences or produce a utility function? Pairwise comparison, when used for preference 
elicitation, presents certain challenges. One significant issue is the cognitive burden it places on 
individuals, stemming from the numerous interactions required to establish a complete and 
comprehensive preference ranking. It must also contend with the challenges posed by the 
decision maker's potential indifference or uncertainty regarding two choices. The answers to 
these two research questions look to explore research focusing on addressing these issues by 
means of algorithmic pair selection and underlying probabilistic models to infer hidden 
preferences. 

 
Strategies for Selecting Pairs for Comparison 
 

The literature on pair selection emphasizes minimizing interactions to reduce the 
cognitive load on the decision maker. Ciomek et al., in their 2016 paper, introduced various 
heuristics to improve scoring while reducing the number of pairs required. These include Pair-
wise Winning Indices (PWI) for assessing the likelihood of preferring one alternative over 
another, Rank Acceptability Indices (RAI) to estimate the probability of an alternative reaching a 
specific rank, along with methods for measuring uncertainty, evaluating information gain, and 
adjusting search depth. This framework aims to focus on the most critical characteristics of an 
item before suggesting it for comparison to the user/decision-maker. Notably, various 
approaches like Elo, probabilistic, and machine-learning can apply these heuristics to suggest 
optimal pairs. In 2017, Branke et al. gave a name to this system approach by terming the one-
step look-ahead technique as a method to reduce interactions. This heuristic involves evaluating 



the potential information gain from each pair-wise comparison question before posing it to the 
decision maker (DM). It considers all possible preference structures aligning with the DM's 
previous answers to select the most informative question, thereby minimizing the number of 
questions needed to discern the DM's preferences. 

The literature also explores different approaches to the “selection rule” for determining 
comparison pairs. Qian et al., in 2015, investigated additional techniques within the one-step 
look-ahead method, including a binary search strategy for selecting comparisons. Pair selection 
involves not just choosing items for comparison but also determining post-decision steps. For 
example, if a decision-maker prefers item A over B in a set containing A, B, C, and D, the next 
step must be decided: whether A continues for comparison with C or is replaced by another pair 
like C and D. This replacement policy is pivotal, with three options: retaining the chosen item, 
replacing it, or replacing both items. Particularly in preference ranking, the "winner remains" 
strategy, where the preferred item stays for further comparison, is often the most intuitive for 
decision makers. In 2019, Balog et al. at Google explored a novel pair-wise tag-interaction 
approach. Users compared and ranked content tags, and the resulting preferences were used to 
recommend content based on tag rankings. This method models semantically rich tag-based 
preferences, enabling transparent item recommendations and aligning with the transparency 
pillar of AI governance. 

In the context of a framework that employs pairwise comparison for eliciting preferences, 
adaptive pair selection and preference ranking emerge as two distinct, but interconnected 
outcomes derived from a unified ranking model. This model functions by generating rankings for 
an extensive collection of items at each stage of decision-making. It utilizes a global rank to 
inform a one-step lookahead strategy. From this global ranking, the top 25 items are specifically 
chosen for recommendations or match-making purposes. The one-step lookahead strategy 
effectively leverages the global ranking as a guiding principle. It adaptively selects pairs of items 
for the decision-maker to evaluate, with the goal of optimizing the decision-making process. This 
optimization is achieved by focusing on explicit decisions that are based on the anticipated 
comparative strengths of the two items in question. This approach uses the global rankings to 
predict which pairs of items would yield the most informative and relevant comparisons for the 
decision-maker. This leads us to the next question; how are the results of such voting methods 
processed to infer preferences or produce a utility function? 

The Bradley-Terry Model for Pairwise Preference Ranking 

Probabilistic models, like the popular Bradley-Terry (BT) model, posits a framework 
wherein the likelihood of one item being preferred over another is quantified, thus enabling a 
hierarchical scoring of the items based on preference data. (Vojnovic et al. 2023[23]). In its basic 
form, the BT model is for binary comparisons (A is preferred over B or vice versa). Extensions 
of the model can handle situations where ties are possible, or where choices among more than 



two items are made simultaneously (multinomial choice models). The model's effectiveness 
depends on the quantity and quality of pairwise comparison data. Sparse or biased data can 
significantly affect the model's performance. The BT model assumes that the probability of one 
item being preferred over another can be expressed solely in terms of their relative strengths or 
scores. This assumption implies a certain simplicity and transitivity in preferences. In the BT 
model, each item in a fixed set receives a score based on these comparisons. The probability of 
item A "beating" item B is expressed as the ratio of A's score (SA) to the sum of scores of A and 
B (SA + SB): 

𝑃	(𝐴	|	𝐵) 	= 	
𝑆𝐴	

(𝑆𝐴	 + 	𝑆𝐵) 

 
The BT model assumes that the probability of one item being preferred over another can 

be expressed solely in terms of their relative strengths or scores; S values are always positive. 
The estimation of strength scores is dependent on whether you take a Bayesian approach or 
frequentist approach to parameter estimation. Each item is given a prior distribution (often with a 
0 mean and standard deviation of 1). In the Bayesian framework, these priors are updated with 
observed data (the decisions or comparisons made) to form posterior distributions (Vitelli et al. 
2018). Simply put, the model uses observed pairwise comparison data to update the parameters 
(scores). Bayesian methods are particularly useful for preference inference, and in involve 
initializing a prior distribution for each item and incorporating an update rule. Through iterative 
processes (like optimization algorithms in frequentist methods like MLE, Min-Max, or MCMC 
in Bayesian methods), these parameters converge to values that best reflect the observed 
preferences. The convergence is towards the scores that make the model's predicted probabilities 
of preferences most consistent with the observed data. The model essentially estimates the utility 
(or strength) of each item based on preferences. Bayesian methods are particularly useful in this 
context as they provide a distribution of possible utility values, reflecting the uncertainty inherent 
in the estimation process. 

Approaches to parameter estimation, a key hyperparameter in probabilistic models like 
Bradley-Terry and Thurstone-Mosteller, aids in creating utility functions or preference rankings 
(Handley et al. 2001). These methods, especially Bayesian parameter estimation, consider prior 
distributions to rank items, even those not directly compared. It allows for indirect comparisons 
and can incorporate prior knowledge or assumptions. Bayesian approach is the more prevalent 
form of sampling since it allows for scoring items not compared and ultimately eases the 
decision maker's cognitive load by minimizing necessary comparisons for a comprehensive 
preference ranking. 

In 2021, D. I. Mattos and É. M. S. Ramos open-sourced the BPCS (Bayesian Paired 
Comparison in Stan) package, using the optimization algorithm No-U-Turn (NUTS) Hamiltonian 
Monte Carlo sampler, a Bayesian method. This approach is coded in the Stan language and 
offers several advantages over the Gibbs sampler. Regarding the parameter estimation methods 



for generating priors, the BPCS package utilizes normal distributions centered around 0, with a 
variance of 3.0 for the priors. This approach allows for the modeling of probabilities in the 
context of the Bayesian Bradley-Terry model. In the paper WeBuildAI: Participatory Framework 
for Algorithmic Governance, the optimization algorithm employed is focused on learning linear 
utilities for random utility models. The final model used in this study is the TM utility model 
with linear mode utility. This approach was chosen due to its simplicity and effective 
performance, and it is noted for being straightforward to summarize and explain, as the utilities 
are linear with respect to features. For estimating the parameters of the TM (Thurstone-
Mosteller) model, the approach involves assuming that each participant's mode utility for every 
potential allocation is a linear function of the feature vector corresponding to that allocation. This 
mode utility is essentially a weighted linear combination of the features.  

There is still the challenge of incorporating items that lack direct comparisons. I have yet 
to find papers discussing implicit signals as additional features informing the priori distribution 
sampling within the Bradley-Terry model. These possible scoring functions can evaluate items 
that haven't been directly chosen by assigning scores based on the observed relationships 
between items that have been explicitly selected. This process involves preprocessing data by 
mapping relational weights between the items that were shown to the decision-maker, thereby 
allowing for a contextual assessment of the unseen items. Feinstein 2003 shows us how decision 
times can reveal relative preferences to alternative choices in pairwise comparison settings. Over 
time, this proposed model would optimize for soliciting explicit votes for items that have only 
been assessed through implicit signals, with the goal of establishing a more robust strength 
distribution, as mentioned by Ciomek (2016) with regards to a continuously adjusting search 
depth. 
 
Conclusion 
 

Pairwise comparison for preference elicitation in the context of content recommenders 
comes with a developing field of literature but lacks a unified framework for applying these 
systems together. Recent research indicates that Pairwise Comparison for Preference Elicitation 
(PCPE) can be effectively utilized as a participatory framework in AI and algorithmic 
governance. The key appeal of this approach lies in its human-in-the-loop design, which 
prioritizes participation. This participatory element makes PCPE-based recommenders a 
compelling alternative for developers. Instead of solely relying on tracking user behavior to 
discern revealed preferences and associated welfare outcomes, this method offers a more 
interactive and human-centric approach. The placement of such a tool within the user interface is 
another factor; for example, pairwise comparison during the onboarding phase of a software’s 
user experience may be more useful for engagement purposes rather than its utilization in 
another corner of the user flow. My exploration leads me now to better understand these 
interconnected topics by implementing models like the Bradley-Terry using Bayesian 
optimization algorithms and including additional features (implicit signals) for parameter 



estimation. This system would score all items, informing a dynamic pair selection while 
producing an overall preference ranking. Such a participatory framework ensures that algorithms 
are not merely tools for engagement maximization but instruments that embody collective 
preferences, ethical considerations, and social values (M.K. Lee et al. 2019 [30]). This shift from a 
solely profit-driven model to a more democratized and transparent approach in algorithm design 
is crucial for mitigating the adverse impacts of current recommender systems. By embedding 
stakeholder participation at the core of algorithmic decision-making, we can create digital 
ecosystems that are not only more equitable and accountable but also more aligned with the 
diverse and evolving needs of society. 
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